Kinetochore microtubules shorten by loss of subunits at the kinetochores of prometaphase chromosomes.

نویسندگان

  • L Cassimeris
  • E D Salmon
چکیده

The site of tubulin subunit dissociation was determined during poleward chromosome movement in prometaphase newt lung cell mitotic spindles using fluorescence photobleaching techniques and nocodazole-induced spindle shortening. Synchronous shortening of all kinetochore microtubules was produced by incubating cells in 17 microM nocodazole to block microtubule assembly. Under these conditions the spindle poles moved towards the metaphase plate at a rate of 3.6 +/- 0.4 microns min-1 (n = 3). On the basis of anti-tubulin immunofluorescent staining of cells fixed after incubation in nocodazole, we found that nonkinetochore microtubules rapidly disappeared and only kinetochore fibers were present after 60-90 s in nocodazole. To localize the site of tubulin subunit dissociation, a narrow bar pattern was photobleached across one half-spindle in prometaphase-metaphase cells previously microinjected with 5-(4,6-dichlorotriazin-2-yl) amino fluorescein (DTAF)-labeled tubulin. Immediately after photobleaching, cells were perfused with 17 microM nocodazole to produce shortening of kinetochore microtubules. Shortening was accompanied by a decrease in the distance between the bleach bar and the kinetochores. In contrast, there was little or no decrease in the distance between the bleach bar and the pole. Compared to their initial lengths, the average kinetochore to pole distance shortened by 18%, the bleach bar to kinetochore distance shortened by 28% and the average bleached bar to pole distance shortened by 1.6%. The data provide evidence that tubulin subunits dissociate from kinetochore microtubules at a site near the kinetochore during poleward chromosome movement. These results are consistent with models of poleward force generation for chromosome movement in which prometaphase-metaphase poleward force is generated in association with the kinetochore.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chromosomes move poleward in anaphase along stationary microtubules that coordinately disassemble from their kinetochore ends

During the movement of chromosomes in anaphase, microtubules that extend between the kinetochores and the poles shorten. We sought to determine where subunits are lost from these microtubules during their shortening. Prophase or prometaphase cells on coverslips were injected with fluoresceinated tubulin and allowed to progress through mitosis. Immediately after the onset of anaphase, a bar-shap...

متن کامل

Cell division in two large pennate diatoms Hantzschia and Nitzschia III. A new proposal for kinetochore function during prometaphase

Prometaphase in two large species of diatoms is examined, using the following techniques: (a) time-lapse cinematography of chromosome movements in vivo; (b) electron microscopy of corresponding stages: (c) reconstruction of the microtubules (MTs) in the kinetochore fiber of chromosomes attached to the spindle. In vivo, the chromosomes independently commence oscillations back and forth to one po...

متن کامل

Dynamics of spindle microtubule organization: kinetochore fiber microtubules of plant endosperm

Organization of kinetochore fiber microtubules (MTs) throughout mitosis in the endosperm of Haemanthus katherinae Bak. has been analysed using serial section reconstruction from electron micrographs. Accurate and complete studies have required careful analysis of individual MTs in precisely oriented serial sections through many (45) preselected cells. Kinetochore MTs (kMTs) and non-kinetochore ...

متن کامل

Properties of the kinetochore in vitro. II. Microtubule capture and ATP- dependent translocation

We have studied the interaction of preformed microtubules (MTs) with the kinetochores of isolated chromosomes. This reaction, which we call MT capture, results in MTs becoming tightly bound to the kinetochore, with their ends capped against depolymerization. These observations, combined with MT dynamic instability, suggest a model for spindle morphogenesis. In addition, ATP appears to mobilize ...

متن کامل

Dynein Is a Transient Kinetochore Component Whose Binding Is Regulated by Microtubule Attachment, Not Tension

Cytoplasmic dynein is the only known kinetochore protein capable of driving chromosome movement toward spindle poles. In grasshopper spermatocytes, dynein immunofluorescence staining is bright at prometaphase kinetochores and dimmer at metaphase kinetochores. We have determined that these differences in staining intensity reflect differences in amounts of dynein associated with the kinetochore....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 98 ( Pt 2)  شماره 

صفحات  -

تاریخ انتشار 1991